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It is known that if f # Wk
p , then |m( f, t)p�t|m&1( f $, t)p� } } } . Its inverse with

any constants independent of f is not true in general. Hu and Yu proved that the
inverse holds true for splines S with equally spaced knots, thus |m(S, t)pt

t|m&1(S$, t)ptt2|m&2(S", t)p } } } . In this paper, we extend their results to splines
with any given knot sequence, and further to principal shift-invariant spaces and
wavelets under certain conditions. Applications are given at the end of the paper.
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1. INTRODUCTION

Let A be an interval of any of the forms [a, b], R :=(&�, �), (&�, b],
or [a, �). Throughout this paper we denote by Lp(A) the usual Lp(A) space
for 1�p<�, and C(A) for p=�. Let 2k

t be the kth forward difference
operator defined by

2k
t ( f, x) :={ :

k

j=0

(&1)k+ j \k
j + f (x+ jt),

0,

if x, x+kt # A,

otherwise

and for any f # Lp(A) let

|k( f, A, t)p=|k( f, t)p := sup
0�u�t

&2k
u f &Lp (A) , t�0,

be the usual kth modulus of smoothness of f, with |0( f, t)p understood as
& f &Lp (A) . Unless we work on subintervals of A, we will very often omit the
interval in the notation. If f # Wk

p(A), the Sobolev space of functions on A
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such that f (k&1) is absolutely continuous and f (k) # Lp , it is well known
that

|m( f, t)p�t|m&1( f $, t)p� } } } �{tk|m&k( f (k), t)p ,
tm & f (m)&p=tm|0( f (m), t)p ,

m>k;
m�k.

(1.1)

The inverse of (1.1) with any constant independent of f is not true in
general (see [8, Theorem 4] for a counterexample).

Yu and Zhou [17] proved part of the inverse in a special case, namely,

h|r&1(S$, h)��Cr|r(S, h)� , (1.2)

where S is any spline of order r with equally spaced knots, and h is the
mesh size. Hu and Yu [9] proved that for such splines S the whole inverse
of (1.1) holds true, thus |m(S, t)p tt|m&1(S$, t)p tt2|m&2(S", t)p } } } . In
this paper we generalize it to splines with arbitrary (fixed) knots, and
further to shift-invariant spaces and wavelets under certain conditions. We
discuss the case of splines in Section 2, and extend the results further to
shift-invariant spaces and wavelets in Section 3. Applications will be given
in the last section.

2. SPLINES

Let r>0 be an integer and let T :=[xi]/Int(A) with xi<xi+r be a
given non-decreasing knot sequence. T is not allowed to have finite cluster
points. If either endpoint of A is finite, we need to add r auxiliary knots
outside A to support a B-spline basis of order r. If A has a finite left
endpoint a and x1>a is the first knots in T, we choose, without loss of
generality, xj :=a+ j(x1&a), j=0, &1, ..., &r+1, as auxiliary knots to
the left. If A has a finite right endpoint b and xn<b is the last knot in T,
we similarly choose xj :=b+( j&n&1)(b&xn), j=n+1, ..., n+r. If the right
(left) endpoint of A is �(&�), we require lim i � � x i=� (limi � &� xi

=&�), respectively. Therefore we can write T=[xi]i # 4 , where 4=
[&r+1, n+r] & Z (Z is the set of all integers) if A=[a, b]; 4=Z if A=
(&�, �); 4=(&�, n+r] & Z if A=(&�, b]; and 4=[&r+1, �) & Z
if A=[a, �).

We shall use the notation Ii :=[x i , xi+1], and I� i :=[xi&r+1 , xi+r] & A.
The mesh size of T is denoted by $� :=max[ |Ii |], where |Ii | :=xi+1&x i is
the measure of Ii , and the length of the shortest subinterval by $

�
:=

min[ |Ii |: xi+1>xi]. The space of all splines of order r on T is denoted
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by Sr=Sr(T)=Sr(T, A), and the B-splines of order r on knot sequence
T by

Nir(x) :=N(x; xi , ..., xi+r) :=(xi+r&x i)[xi , ..., xi+r]( } &x) r&1
+ .

It is well known that these B-splines form a basis Sr , and every spline
S # Sr can be written as

S=:
i

ci Nir , (2.1)

where i runs from &r+1 to n if A=[a, b], from &� to n if A=(&�, b],
and so on. The difference operators on finite or infinite sequences of real
numbers c :=[ci] are defined by

2k ci :=2(2k&1 ci)= :
k

j=0

(&1)k+ j \k
j+ ci+ j , k�1,

and 2k c :=[2k ci]. When these operators are applied to the coefficient
sequence of (2.1), the largest admissible i is n&k if A has a finite right
endpoint b. We shall use a discrete norm _c_p :=&c$& lp

, where c$ :=[c$i],
c$i :=d1�p

i ci , and di :=(x i+r&xi)�r. With the notation above, the main
theorem in Hu and Yu [9] can be stated as

Theorem A. Let T be an equally spaced knot sequence with h :=|I i |=
$� , S be such as in (2.1), and let 0�t�h. If m<r, then

t j|m& j (S ( j), t)p t\ t
h+

m

_2m c_p , 0� j�m, (2.2)

therefore they are all equivalent. For m�r we have

t j|m& j (S ( j), t)p t\ t
h+

r&1+1�p

_2r c_p , 0� j<r, (2.3)

and again they are all equivalent. Moreover, the equivalence constants depend
only on max(r, m) in either case.

This theorem includes (1.2) as a special case, and also generalizes in
another direction the following theorem for splines with arbitrary knot
sequence by de Boor (see [1] and [14] for p=�, and [6] for 1�p<�).
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Theorem B. Let S be as in (2.1). Then &S&p and _c_p are equivalent,

Dr _c_p�&S&p�_c_p ,

where Dr>0 is a constant depending only on r.

We now remove the requirement of equal spacing in Theorem A by
proving the following two theorems.

Theorem 1. Suppose 0�t�$� . If the multiplicity of every knot in T is no
greater than r&m for some 0<m<r, that is, if Sr /Wm

p , then for any
S # Sr

t j|m& j (S ( j), t)p t(t�$� )m |m(S, $� )p , 0� j�m, (2.4)

where the equivalence constants depend on r and the ratio $� �$
�
.

Theorem 2. Let m�r, * :=r&1+1�p, and 0�t�$� . If all interior
knots in T are single, then

t j|m& j (S ( j), t)p tt* \:
i

|Ii |
p+

1�p

, 0� j<r, (2.5)

where Ii is the jump of S (r&1) at x i , and the equivalence constants depend on
m and the ratio $� �$

�
.

Remark. The equivalence in (2.4) and (2.5) also holds for all t greater
than and comparable with $� . When t is large, however, there is no equiv-
alence among t j|m& j (S ( j), t)p unless we allow C to depend on the ratio t�$� .
See [9] for a counterexample in C. For general case, consider t=1 and
S=�i (&1)i Nir on [0, 1] with n equally spaced interior knots. One can
see that |m&1(S$, 1)p increases with n but |m(S, 1)p does not.

The proofs turned out to be easy, to our great surprise. But one can no
longer measure the moduli by discrete norms _ }_p in terms on B-spline
coefficients, at least not with our proofs. We need some lemmas for the
proofs; the first of them can be found in DeVore and Lorentz's book [6,
Proposition 5.4.6].

Lemma C. If the spline S :=QT( f ), where QT is the quasi-interpolant
defined in [6, Section 5.4], then for 1�m<r

|S (m)(x)|�Cr |Ii |
&m&1�p Em( f, I� i)p , x # (xi , x i+1), (2.6)
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where Em( f, I )p is the degree of approximation of f on I by algebraic polyno-
mials of degree <m.

Lemma 2.1. Let 0� j�m<r, and S # Sr & Wm
p . Then

{:
i

( |Ii |
m& j &S (m)&Lp (Li )

) p=
1�p

�Cr|m& j (S ( j), A, $� )p . (2.7)

Proof. If xi+1>x i , by Lemma C and the fact that the quasi-interpolant
QT is a projection from Lp to Sr , that is, S=QT(S), we have

|S (m)(x)|�C |I i |
&m&1�p Em(S, I� i)p , x # (xi , xi+1). (2.8)

If we view S (m) as (S ( j)) (m& j), and note that S ( j) # Wm& j
p , this becomes

|S (m)(x)|�C|I i |
&m+ j&1�p Em& j (S ( j), I� i)p , x # (x i , xi+1).

Integrate this over Ii we derive

|Ii |
m& j &S (m)&Lp (Ii )

�CEm& j (S ( j), I� i)p�C|m& j (S ( j), I� i , |I� i | )p . (2.9)

And this is also (trivially) true for the case of xi=xi+1 . Raising both sides
of (2.9) to the pth power and adding over i give

:
i

( |Ii |
m& j &S (m)&Lp (Ii ))

p�C p :
i

|m& j (S ( j), I� i , |I� i | ) p
p �C p|m& j (S ( j), A, $� ) p

p .

For the second inequality above, see [12] and [7] for the case of a finite
interval [a, b]. The general case can be easily proved through use of an
average modulus of smoothness, cf. [6, Section 6.5]. K

Lemma 2.2. Let S be any spline in Sr & Wm
p for some m<r. Then

$� j |m& j (S ( j), $� )p t|m(S, $� )p 0� j�m, (2.10)

where the equivalence constants depend on r and the ratio $� �$
�
.

Proof. Lemma 2.1 with j=0 gives

$
�

&S (m)&Lp (A)�C {:
i

( |Ii |
m &S (m)&Lp (Ii ))

p=
1�p

�C|m(S, A, $� )p ,

and (2.10) easily follows from this and (1.1). K
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Proof of Theorem 1. For any 0<t�$� , we have

|m(S, $� )p=|m(S, ($� �t) t)p�C($� �t)m |m(S, t)p�C($� �t)m t|m&1(S$, t)p

�C($� �t)m t2|m&2(S", t)p� } } } �C($� �t)m tm &S (m)&p

=C$� m &S (m)&p�C|m(S, $� )p ,

which gives (2.4). K

Proof of Theorem 2. The proof is almost identical to that of (1.9) in Hu
and Yu [9, Theorem 2]. The difference is, of course, that the spline s in
[9] has equal spacing. Note that, however, their proof does not use equal
spacing of s, but that of the B-splines N� i defined in (2.10�11) of [9], which
is introduced by the difference operator 2m

t . As long as mt�$
�
, their

arguments are valid here, and can be copied almost line by line. K

3. SHIFT-INVARIANT SPACES AND WAVELETS

We now extend our results to shift-invariant spaces (SI) and wavelets.
We shall use some notation and properties very common in the literature
without explicitly mentioning any references, most of them can be found in,
for example, [2, 5, 11, 3, 4, 13]. Although many of the known results we
mention here are true for 0<p��, we shall concentrate on the case
1�p��, since our results are only true for p�1. In this section, we prove
our main result Theorem 3 only on A=R, but it should be pointed out
that it holds true if we restrict every function involved to any interval. A
space S of functions defined on R is said to be shift-invariant if

f # S � f ( } +i) # S for all i # Z.

In other words, S contains all integer translates of f if it contains f. One
of the simplest SI spaces, called principal shift-invariant space (PSI), is
generated by a single function .:

S=S(.) :=[S= :
i # Z

ci .( } &i): [ci] # lp(Z)]. (3.1)

We make the following assumptions about ..

1. . is supported on an interval [&\, \], with \ a positive integer;

2. . # Wk
p(R) for some 0<k�r;
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3. . satisfies Strang�Fix conditions for some positive integer r:

(i) .̂(0)=1;

(ii) D&.̂(2?i=0, i # Z"[0], 0�&<r;

4. the functions .i :=.( } &i), i # Z, are globally linearly independent.

For any h>0, the scaled spaces Sh of S is defined by

Sh :=Sh(.) :=[S( } �h): S # S].

In applications, one is interested in how well a general function f is approx-
imated by elements of Sh . From Assumption 4 we know that any Sh #
Sh(.) can be uniquely written as

Sh= :
i # Z

ci .i ( } �h)= :
i # Z

c i .( } �h&i), [ci] # lp(Z). (3.2)

The series converges uniformly on any compact set since for any x # R,
there are at most 2\ nonzero terms in Sh(x), and it has been shown in the
literature that it converges in the Lp topology, too. It is well-known that
Strang�Fix conditions imply that any polynomial in Pr&1 , the space of all
polynomials of degree <r, is contained in S(.) locally.

Closely related to PSI are wavelets. Together with a wavelet . we shall
use its dyadic dilates .( } 2n), n # Z, and their translates .ni :=.( } 2n&i),
n, i # Z. If n=0, we omit n in the notation: .i :=.0i=.( } &i). In addition
to the four assumptions above, we further assume that . satisfies the refine-
ment equation:

5. .=.0=� i ai.1i , where the sum is taken over a finite number of
i # Z.

It turns out that the summation only contains those i for which supp .1i

/supp .. It has been shown that any f # Lp has wavelet decomposition

f = :
l # Z

:
i # Z

ali.li (3.3)

with convergence in Lp . In applications, one often compresses (say, choos-
ing a finite number of terms) or truncates the decomposition. Suppose that
the highest resolution after this action is n, one can use the refinement
equation to rewrite the result as

Sn= :
i # Z

ci .ni= :
i # Z

ci .( } 2n&i). (3.4)
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Since (3.4) is a special case of (3.2) with h=2&n, we shall concentrate on
(3.2) in the rest of the section, and show the inverse of (1.1) holds for func-
tions in that form. Namely we prove

Theorem 3. Let Sh be as in (3.2). Then for any 0�t<h and m�k, all
quantities

t j|m& j (S ( j)
h , t)p , 0� j�m, (3.5)

are equivalent, with equivalence constants depending only on . and m.

Proof. If we let y :=h&1x, u :=h&1t, and F( y) :=f (hy)= f (x), then
t j&1�p|m& j ( f ( j), t)p=u j&1�p|m& j (F ( j), u)p . Therefore we only need to
prove (3.5) for h=1.

We first prove an analogue of (2.6) (and (2.8)) by mimicking its proof
in DeVore and Lorentz's book [6]. Let c& be the dual functionals to the
basis .( } &i) of S :=S1 , that is, c&(.i)=$i& , then each S # S can be
written as

S=:
i

ci (S) .i .

Note that ci (S)=c0(S( } +i)) and the norm of c0 as an operator in Lp

depends only on .:

|c0(S)|�C &S&Lp (I+ ) , S # S,

for any integer + such that . does not vanish identically on I+=[+, ++1].
Since . is compactly supported, there are only 2\ such intervals. We now
fix an interval I&=[&, &+1]. Since Pr&1 �S locally, for any polynomial
P # Pm&1 �Pr&1 and \x # I& , we have

S(x)&P(x)= :
&+\

i=&+1&\

ci (S&P) .i (x)

and

|S (m)(x)|=|(S&P)(m)(x)|� :
&+\

i=&+1&\

|ci (S&P) . (m)
i (x)|

�C &S&P&Lp (I& ) :
&+\

i=&+1&\

|. (m)
i (x)|.
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Raising both side of the inequality to the pth power and integrating over
I& , we obtain

&S (m)&Lp (I& )�C &.(m)&Lp (R) &S&P&Lp (I& )�&S&P&Lp (I& ) ,

here in the last step we are able to drop &.(m)&Lp (R) because we allow C to
depend on . and m. Take minimum of this over all polynomials P # Pm&1 ,
we obtain the desired analogue

&S (m)&Lp (I& )�CEm(S, I&)p�C|m(S, I& , 1)p .

If we view S (m) as (S ( j)) (m& j), this becomes

&S (m)&Lp (I& )�CEm& j (S ( j), I&)p�C|m& j (S ( j), Iv , 1)p ,

which corresponds to (2.9), (we remind the reader that |I& |=1). The rest
of the proof is similar to that of Lemma 2.1. K

4. APPLICATIONS

In this section, we give some possible applications of our results. We first
estimate derivatives of spline and PSI approximants. We point out that
although estimates for wavelet compressions on R similar to the following
examples may not be very useful due to very small values of h=2&n, noth-
ing can prevent one from using the results in an area where the function
f is relatively flat hence n relatively small.

Example 1. Let r>3 and 2�k<r. Let T be a knot sequence with $�
comparable with n&1, and S a spline in Sr(T) & W3

p . If S approximates a
function f # W3

p with an error

& f&S&p�C0n&1|k( f $, n&1)p , (4.1)

where C0�1, and we want to estimate &S (3)&p , then

|3(S, n&1)p�|3( f &S, n&1)p+|3( f, n&1)p�C & f&S&p+n&1|2( f $, n&1)p

�CC0n&1(|k( f $, n&1)p+|2( f $, n&1)p)�CC0n&1|2( f $, n&1)p .

From n&3&S (3)&p t|3(S, n&1)p , we obtain

&S (3)&p�CC0 n2|2( f $, n&1)p�CC0n|( f ", n&1)p�CC0& f (3)&p ,

with C depending on r, n$� , and $� �$
�
.
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The assumption k�2 in Example 1 is not essential for estimating
&S (3)&p . Even if (4.1) is replaced by a lower order Jackson inequality, one
can still estimate the size of S (3), or any higher order derivative of S, in a
different format, of course. We illustrate this in a second example.

Example 2. Let k�0, and let f # Lp be approximated by an element Sh

of a PSI space Sh(.)/W3
p with

& f&Sh&p�C|k( f, h)p . (4.2)

By the subadditivity of |m and the fact |m(g, t)p�Cm|m&1(g, t)p for any
g # Lp we derive

|3(Sh , h)p�|3( f &Sh , h)p+|3( f, h)p�C|k� ( f, h)p .

where k� :=min(k, 3). From h3 &S (3)
h &p t|3(Sh , h)p we conclude

&S (3)
h &p�Ch&3|k� ( f, h)p , (4.3)

with the constant C depending only on ..

There are examples in [8, Theorem A] and [9] on how (special cases
of) our theorems can be use to ``transplant'' results on degree of approxi-
mation by one kind of approximants to that by another kind. With the
generalized results in this paper, some restrictions (such as equal spacing
for splines) can be removed, of course. Here we give one more example, in
which Shvedov's counterexample on convex polynomial approximation in
[16] is transplanted to convex spline approximation. Suppose for any
n�r+3 there is a knot sequence containing n interior knots: Tn=
[xni]n+r

i=&r+1 (with auxiliary knots, see the beginning of Section 2), on
[0, 1]. We define its mesh size by $� n :=maxi[ |Ini |], where Ini :=[xni , xn, i+1],
and its length of the shortest subinterval by $

� n :=mini[ |Ini |: xn, i+1>xni].

Theorem 4. Let r�3 be an integer, and let Tn , n=r+3, r+4, ..., be
any knot sequences such that both (n$� n)&1 and $� n �$

� n are bounded by an
absolute constant M>0, and that Sn

r :=Sr(Tn , [0, 1])/W2
�[0, 1]. Then

for any K>0 and n�r+3 there exists a convex function f # C[0, 1] such
that

E (2)( f, Sn
r )��K|4( f, n&1)� , (4.4)

where E (2)( f, Sn
r )� is the degree of approximation of f by convex splines

from Sn
r .
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Proof. Suppose (4.4) is not true, that is, if for every convex function
f # C[0, 1], there is a convex spline S # Sn

r such that

& f&S&��K|4( f, n&1)� ,

then we can apply a result by Manya and Shevchuk (see [10] and [15])
to this S and obtain a convex polynomial Pn such that

&S&Pn&��C1 n&2|2(S", n&1)�<C2|4(S, n&1)��C3 |4( f, n&1)� ,

(4.5)

with C3 depending only on M and K. Thus

& f&Pn &��& f&S&�+&S&Pn&��(C3+K) |4( f, n&1)� ,

which contradicts Shvedov's counterexample. K

In fact, as pointed out by a referee of this paper, one can show (4.4) with
n&1 replaced by any 0<'�1 for any fixed knot sequence. We state this in
the last theorem of the paper.

Theorem 5. Let r�3 be an integer, and let T=[xi]N+r
i=&r+1 be any knot

sequence on [0, 1] as described in Section 2 such that Sr(T, [0, 1])/
W2

�[0, 1]. Then

sup
f # U

E (2)( f, Sr)�

|4( f, 1)�
=�, (4.6)

where U denotes the set of all convex functions in C[0, 1]"P3 .

Proof. The statement (4.6) is equivalent to that for any K>0, _f # U
such that

E (2)( f, Sr)��K|4( f, 1)� , (4.7)

which can be shown just like (4.4) except that we have to choose the degree
of the polynomial Pn in (4.5) so that n�max($� &1, r+3) in order to apply
Theorem 1 and Manya and Shevchuk's result. K
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